100% Renewable Energy Plan of Sri Lanka
1. Country at a Glance

- **Socio-Economic**
 - Population : 20.5 Million
 - Per Capita GDP : 3,600 US$

- **Energy Sector**
 - Primary Energy Supply by Sources:
 - Biomass : 43.3%
 - Petroleum & Coal : 49.8%
 - Large hydro : 4.3%
 - NREs (Small hydro, wind, solar): 2.6%
 - Total Consumption: 8.9 MToE
 - Industry : 25.4 %
 - Transport : 28.8 %
 - Domestic & Commercial : 45.8 %
 - Electricity Sector:
 - Total Installed Capacity : 3900 MW
 - Peak Load : 2200 MW
 - HH electrification : 98% (Grid - 95% + Off-grid - 3%)

Generation by Source
- Hydro : 30%
- Thermal : 60%
- NRE : 10%

NRE Capacities
- Small hydro : 290 MW
- Wind : 100 MW
- Solar : 10 MW
- Biomass : 20 MW
2. Energy Policy Framework

- National Development Policies and Strategies
 - Election Manifesto of New H.E. the President – Section 10: An Energy Secure Sri Lanka
 - Haritha Lanka Programme: Action plan of the National Council for Sustainable Development
 - Provincial Sustainable Energy Policies / Plans (in progress)

- Energy Sector Policies and Strategies
 - National Energy Policy and Strategies
 - National targets (20% grid electricity by NRE & 2000 GWh of electricity saving by 2020)
 - Sustainable Energy Policy / 100% RE Policy (draft)
3. 100% RE – The Rationale

- **Present Context – Unsustainable Scenario**
 - Energy & Transport Sectors heavily Foreign/Petroleum Dependent
 - Economic Burden in Long-term Context
 - Resource Depletion / Environmental Concerns

- **Welcoming Opportunities for Sustainable Scenario**
 - High Resource Potential
 - Technology Advancements / Competitiveness in RE
 - Solar PV Prices & Technologies
 - Storage Systems / Decentralized Systems
 - Energy Efficient Technologies / Energy Mgt. Systems
 - Knowledge Management / Sustainable Life Styles
 - Opening up of Green Financing Avenues
4. 100% RE – The Resource Base

Sources: NREL & SLSEA Resource Maps
4. 100% RE – The Resource Base (Contd.)

- **Strategic Approach**

Resource Maps
- Technical potential of NCRE
- Wind – 20,000 MW, Solar – Unquantifiable, Small Hydro – 800 MW, Biomass – 8,000 MW

Resource Inventory
- Exploitable RE potentials considering socio-environmental limitations
- Wind – 5,000 MW, Solar PV – 18,000 MW+, Small Hydro – 800 MW, Biomass – 1,000 MW

Technology Road Map
- A systematic framework to prioritize different RE Resource-Technology-Application options, focusing policy targets
5. 100% RE – The Overall Approach

✓ Strategic Approach

 Avoid

 Shift

 Improve

✓ End-use Sectors

 Industrial & Commercial

 Domestic

 Transport

RENEWABLE ENERGY
6. 100% RE – The Energy Use Scenario

- Stable population of around 23 million people, transformed to energy conscious society

- A transformed society
 - With full digital convergence
 - Integrated mostly electronically

- Developed, knowledge based economy → 18000MW demand
 - Lowered to 15,000MW due to low energy intensity of economy
 - Further lowered by EE gains to 10,000MW (≈ 10 kWh/person/day)

- Electricity system
 - Taken over the most aspects of the energy industry through an Internet Protocol (IP) based smart grid
 - Powered, mostly by centralized wind parks and distributed solar PV, assisted by storage hydro; Biomass, agro and municipal waste streams supporting firm power
 - Gradual virtual grid isolation using solar and battery storage
 - Gradual shift for EVs, etc. (around 30 kWh/person/day at fully developed stage)
7. Sectoral Approaches

TRANSPORT
- Complete electrification of transport realized
 - Most major cities will be predominantly pedestrian in character and will have only electric bicycles, scooters, E3Ws and E-taxis to support
 - Passenger transport dominated by electric trains and electric BRT supported by a fleet of EV taxis
 - Storage capacity of EVs used as a grid balancer
 - Hydrogen Fuel cell vehicles, Compressed air vehicles
 - Algae based bio-fuels and compressed biogas powering long haul transport

RESIDENTIAL
- Almost all homes isolated from central grid
 - Own roof top solar PV with advanced battery solutions
 - Energy efficient appliances, mostly connected to DC micro grids
 - Cooking energy, a combination of modern biomass and induction stoves
 - Solar water heaters
 - Waste converter (including biogas digester), a household appliance
7. Sectoral Approaches (Contd.)

INDUSTRY
- Industries are resource efficient low energy demand types
 - Thermal energy from improved biomass, biogas and RDF
 - Geothermal, Ocean thermal for low temperature thermal energy
 - Solar water pumping for lift-irrigation
 - Electricity from local grids, and assisted by central grid
 - DC motors taking over the role of preferred motive power source

COMMERCIAL
- Building innovations driven commercial sector
 - Most commercial centres cooled by district ocean thermal and geothermal assisted by ice storage
 - Most buildings energy efficient - zero / positive energy buildings
 - All buildings with advanced BMS systems and Building-Integrated Photovoltaic (BiPV) envelopes
 - Advanced technologies such as co-generation and tri-generation
 - Waste to Energy - fully materialized.

This is assisted by RE and EE Technology Roadmaps
8. Costs/Benefits and Barriers

- **Economic Impact**
 - Direct Cost assuming 100% Solar with 2/3 of energy storage US$ 150 billion (90% of the cost for storage)
 - 2/3 of GDP under US$ 10,000 per capita GDP scenario

- **Co-benefits**
 - Employment Creation
 - Value Addition for Local Resources
 - Local Expertise Development

- **Barriers**
 - Multi Stakeholder Involvement
 - Not a Major National Priority (like Poverty Alleviation)
 - Requirement of Coordination through a Sound Institutional Setup
Summing Up

Towards An Energy Secure Sri Lanka

Supporting Global 100% Renewable Energy Future

Acknowledgements for the organizers of ACEF 2015

Thank you!